翻訳と辞書
Words near each other
・ FA Cup semi-finals
・ FA Cup Third-fourth place matches
・ FA Cup trophy
・ Fa Fa
・ FA Futsal Cup
・ Fa gao
・ Fa Ham
・ Fa Hien Cave
・ Fa Hui Park
・ F18
・ F19
・ F1rst Love
・ F2
・ F2 Gallery
・ F2 generation
F2 propagation
・ F20
・ F20 manual transmission
・ F200
・ F2000 Championship Series
・ F2008
・ F21
・ F22
・ F23
・ F24
・ F24 camera
・ F25
・ F25 manual transmission
・ F26
・ F26A graph


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

F2 propagation : ウィキペディア英語版
F2 propagation
(詳細はcycle of approximately 11 years. During this period, sunspot activity rises to a peak and gradually falls again to a low level. When sunspot activity increases, the reflecting capabilities of the F1 layer surrounding earth enable high frequency short-wave communications. The highest-reflecting layer, the F2 layer, which is approximately 200 miles (320 km) above earth, receives ultraviolet radiation from the sun, causing ionisation of the gases within this layer. During the daytime when sunspot activity is at a maximum, the F2 layer can become intensely ionized due to radiation from the sun. When solar activity is sufficiently high, the MUF (Maximum Usable Frequency) rises, hence the ionisation density is sufficient to reflect signals well into the 30 – 50 MHz VHF spectrum. Since the MUF progressively increases, F2 reception on lower frequencies can indicate potential low band 45-55 MHz VHF TV as well as VHF amateur radio paths. A rising MUF will initially affect the 27 MHz CB band, and the amateur 28 MHz 10 meters band before reaching 45-55 MHz TV and the 6 Meter amateur band. The F2 MUF generally increases at a slower rate compared to the Es MUF.
Since the height of the F2 layer is some 200 miles (320 km), it follows that single-hop F2 signals will be received at thousands rather than hundreds of miles. A single-hop F2 signal will usually be around 2,000 miles (3,200 km) minimum. A maximum F2 single-hop can reach up to approximately 3,000 miles (4,800 km). Multi-hop F2 propagation has enabled low-band VHF reception to over 11,000 miles (17,700 km).

Since F2 reception is directly related to radiation from the Sun on both a daily basis and in relation to the sunspot cycle, it follows that for optimum reception the centre of the signal path will be roughly at midday.
The F2 layer tends to predominantly propagate signals below 40 MHz, which includes the 27 MHz CB band, and 28 MHz 10-metre Amateur radio band. Less frequently, television and amateur signals in the 45 – 55 MHz VHF band are also propagated over considerable distances. In North America, F2 is most likely to only affect VHF TV channel 2.
Television pictures propagated via F2 tend to suffer from characteristic ghosting and smearing. Picture degradation and signal strength attenuation increases with each subsequent F2 hop.
==Notable F2 DX receptions==

* In 1958, the FM broadcast radio DX record was set by DXer Gordon Simkin in southern California, United States, when he logged a 45 MHz commercial FM station from Korea via trans-Pacific F2 propagation at a distance of 5,000 miles (8,000 km).
* In October 1979, Anthony Mann (Perth, Western Australia) received 48.25 MHz audio and 51.75 MHz video from the Holme Moss BBC channel B2 television transmitter. This F2 reception is a world record for reception from a BBC 405-line channel B2 transmitter.〔(【引用サイトリンク】 work=The University of Western Australia School of Physics )
* During October to December 1979, United Kingdom DXers Roger Bunney (Hampshire), Hugh Cocks (Sussex), Mike Allmark (Leeds), and Ray Davies (Norwich) all received viewable television pictures from Australian channel TVQ 0 Brisbane (46.26 MHz) via multi-hop F2 propagation.
* On January 31, 1981, Todd Emslie, Sydney, Australia, received 41.5 MHz channel B1 television audio transmitted from Crystal Palace Transmitter by the BBC's television service, 10,560 miles (16,990 km) away. This BBC B1 reception was also recorded on to audio tape.〔( Todd Emslie's TV FM DX Site )〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「F2 propagation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.